\square

Question Paper Code : X 60764

B.E./B.Tech. DEGREE EXAMINATIONS, NOV./DEC. 2020
 First Semester
 Civil Engineering
 MA 2111/MA12/080030001 - MATHEMATICS - I
 (Common to All Branches)

(Regulations 2008)

Time : Three Hours
Maximum : 100 Marks.
Answer ALL questions.
PART - A
(10×2=20 Marks)

1. If $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6\end{array}\right]$ then find the eigen values of A^{-1}.
2. State Cayley-Hamilton theorem.
3. Find the centre and radius of the sphere

$$
2 x^{2}+2 y^{2}+2 z^{2}+6 x-6 y+8 z+9=0 .
$$

4. Prove that the equation $\mathrm{x}^{2}-2 \mathrm{y}^{2}+3 \mathrm{z}^{2}+5 \mathrm{yz}-6 \mathrm{zx}-4 \mathrm{xy}+8 \mathrm{x}-19 \mathrm{y}-2 \mathrm{z}-20=0$ represents a cone with vertex $(1,-2,3)$.
5. Find the curvature of the circle $x^{2}+y^{2}=25$ at the point $(4,3)$.
6. Define evolute of the curve.
7. If $u=\frac{x}{y}+\frac{y}{z}+\frac{z}{x}$, show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=0$.
8. If $u=\frac{y^{2}}{2 x}, v=\frac{x^{2}+y^{2}}{2 x}$, find $\frac{\partial(u, v)}{\partial(x, y)}$.
9. Plot the region of integration to evaluate the integral $\iint_{D} f(x, y) d x d y$ where D is the region bounded by the line $\mathrm{y}=\mathrm{x}-1$ and the parabola $\mathrm{y}^{2}=2 \mathrm{x}+6$.
10. Evaluate $\int_{0}^{2} \int_{0}^{\pi} r \sin ^{2} \theta d \theta d r$.
11. a) i) Verify Cayley-Hamilton theorem for a matrix $A=\left[\begin{array}{ccc}1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1\end{array}\right]$ and hence find A^{-1}.
ii) Find the eigen values and eigenvectors of a matrix $\left[\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$.
b) Reduce the quadratic form $8 x^{2}+7 y^{2}+3 z^{2}-12 x y-8 y z+4 z x$ to the canonical form through an orthogonal transformation. Hence find the following :
i) Nature of the quadratic form.
ii) Rank, index and signature of the quadratic form and
iii) A set of non-zero values of $\mathrm{x}, \mathrm{y}, \mathrm{z}$ which will make the quadratic form zero.
12. a) i) Find the equations of the tangent planes to the sphere $x^{2}+y^{2}+z^{2}-4 x-2 y$ $+6 z+5=0$ which are parallel to the plane $x+4 y+8 z=0$. Find also their points of contact.
ii) Find the equation of the right circular cone whose vertex is ($2,1,0$), semivertical angle is 30° and the axis is the line $\frac{\mathrm{x}-2}{3}=\frac{\mathrm{y}-1}{1}=\frac{\mathrm{z}}{2}$.
(OR)
b) i) Find the equation of the cylinder whose generators are parallel to $\frac{\mathrm{x}}{2}=\frac{\mathrm{y}}{2}=\frac{\mathrm{z}}{-3}$ and whose guiding curve is the ellipse $3 \mathrm{x}^{2}+\mathrm{y}^{3}=3, \mathrm{z}=2$.
ii) Show that the plane $2 \mathrm{x}-2 \mathrm{y}+\mathrm{z}+12=0$ touches the sphere $x^{2}+y^{2}+z^{2}-2 x-4 y+2 z=3$ and also find the point of contact.
13. a) i) Prove that for the curve $y=\frac{a x}{a+x},\left(\frac{2 p}{a}\right)^{\frac{2}{3}}=\left(\frac{x}{y}\right)^{2}+\left(\frac{y}{x}\right)^{2}$.
ii) Find the envelope of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ where a and b are connected by the relation $\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2}$, c being a constant.
(OR)
b) i) Obtain the equation of the evolute of the curve $\mathrm{x}=\mathrm{a}(\cos \theta+\theta \sin \theta)$, $\mathrm{y}=\mathrm{a}(\sin \theta-\theta \cos \theta)$.
ii) Prove that the radius of curvature of the curve $x y^{2}=a^{3}-x^{3}$ at the point (a, 0) is $\frac{3 \mathrm{a}}{2}$.
14. a) i) If $u=\tan ^{-1}\left[\frac{x+y}{\sqrt{x}+\sqrt{y}}\right]$ show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\frac{1}{4} \sin 2 u$.
ii) Find the Jacobian of y_{1}, y_{2}, y_{3} with respect to x_{1}, x_{2}, x_{3} if

$$
\begin{equation*}
\mathrm{y}_{1}=\frac{\mathrm{x}_{2} \mathrm{x}_{3}}{\mathrm{x}_{1}}, \mathrm{y}_{2}=\frac{\mathrm{x}_{3} \mathrm{x}_{1}}{\mathrm{x}_{2}}, \mathrm{y}_{3}=\frac{\mathrm{x}_{1} \mathrm{x}_{2}}{\mathrm{x}_{3}} . \tag{8}
\end{equation*}
$$

(OR)
b) i) Expand $\tan ^{-1}\left(\frac{y}{x}\right)$ as a Taylor series about the point $(1,1)$ upto $2^{\text {nd }}$ degree terms.
ii) Find the shortest distance from the point $(1,0)$ to the parabola $y^{2}=4 x$.
15. a) i) Change the order of integration $\int_{0}^{1} \int_{x^{2}}^{2-x} x y d y d x$ and hence evaluate.
ii) Transform the integral into polar coordinates and hence evaluate

$$
\begin{array}{r}
\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} \sqrt{x^{2}+y^{2}} d y d x . \tag{8}\\
(O R)
\end{array}
$$

b) i) Find, by double integration, the area between the two parabolas $3 y^{2}=25 x$ and $5 \mathrm{x}^{2}=9 \mathrm{y}$.
ii) Find the volume of the portion of the cylinder $x^{2}+y^{2}=1$ intercepted between the plane $\mathrm{x}=0$ and the paraboloid $\mathrm{x}^{2}+\mathrm{y}^{2}=4-\mathrm{z}$.

