Question Paper Code : X 60764

B.E./B.Tech. DEGREE EXAMINATIONS, NOV./DEC. 2020 **First Semester Civil Engineering** MA 2111/MA12/080030001 - MATHEMATICS - I (Common to All Branches) (Regulations 2008)

Time : Three Hours

Maximum : 100 Marks.

Answer ALL questions.

PART - A

PART – A 1. If A = $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 6 \end{bmatrix}$ then find the eigen values of A⁻¹.

Reg. No. :

- 2. State Cayley-Hamilton theorem.
- 3. Find the centre and radius of the sphere $2x^2 + 2y^2 + 2z^2 + 6x - 6y + 8z + 9 = 0.$
- 4. Prove that the equation $x^2 2y^2 + 3z^2 + 5yz 6zx 4xy + 8x 19y 2z 20 = 0$ represents a cone with vertex (1, -2, 3).
- 5. Find the curvature of the circle $x^2 + y^2 = 25$ at the point (4, 3).
- 6. Define evolute of the curve.
- 7. If $u = \frac{x}{y} + \frac{y}{z} + \frac{z}{x}$, show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = 0$. 8. If $u = \frac{y^2}{2x}$, $v = \frac{x^2 + y^2}{2x}$, find $\frac{\partial(u, v)}{\partial(x, v)}$.
- 9. Plot the region of integration to evaluate the integral $\iint f(x, y) dx dy$ where D is the region bounded by the line y = x - 1 and the parabola $y^2 = 2x + 6$.

10. Evaluate
$$\int_{0}^{2} \int_{0}^{\pi} r \sin^{2} \theta \, d\theta dr$$
.

X 60764

PART – B $(5 \times 16 = 80 \text{ Marks})$ 11. a) i) Verify Cayley-Hamilton theorem for a matrix $A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}$ and hence find A^{-1} . (8) ii) Find the eigen values and eigenvectors of a matrix $\begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$. (8) (OR)

- b) Reduce the quadratic form $8x^2 + 7y^2 + 3z^2 12xy 8yz + 4zx$ to the canonical form through an orthogonal transformation. Hence find the following :
 - i) Nature of the quadratic form.
 - ii) Rank, index and signature of the quadratic form and
 - iii) A set of non-zero values of x, y, z which will make the quadratic form zero. (16)

12. a) i) Find the equations of the tangent planes to the sphere x² + y² + z² - 4x - 2y + 6z + 5 = 0 which are parallel to the plane x + 4y + 8z = 0. Find also their points of contact .

ii) Find the equation of the right circular cone whose vertex is (2, 1, 0), semivertical angle is 30° and the axis is the line $\frac{x-2}{3} = \frac{y-1}{1} = \frac{z}{2}$. (8) (OR)

- b) i) Find the equation of the cylinder whose generators are parallel to $\frac{x}{2} = \frac{y}{2} = \frac{z}{-3}$ and whose guiding curve is the ellipse $3x^2 + y^3 = 3$, z = 2. (8)
 - ii) Show that the plane 2x 2y + z + 12 = 0 touches the sphere $x^2 + y^2 + z^2 - 2x - 4y + 2z = 3$ and also find the point of contact. (8)

13. a) i) Prove that for the curve $y = \frac{ax}{a+x}, \left(\frac{2p}{a}\right)^{\frac{2}{3}} = \left(\frac{x}{y}\right)^{2} + \left(\frac{y}{x}\right)^{2}$. (8)

ii) Find the envelope of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ where a and b are connected by the relation $a^2 + b^2 = c^2$, c being a constant. (8) (OR)

- b) i) Obtain the equation of the evolute of the curve $x = a(\cos \theta + \theta \sin \theta)$, $y = a(\sin \theta - \theta \cos \theta)$. (8)
 - ii) Prove that the radius of curvature of the curve $xy^2 = a^3 x^3$ at the point (a, 0) is $\frac{3a}{3}$.

t (a, 0) is
$$\frac{64}{2}$$
. (8)

14. a) i) If
$$u = \tan^{-1}\left[\frac{x+y}{\sqrt{x}+\sqrt{y}}\right]$$
 show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \frac{1}{4}\sin 2u$. (8)

ii) Find the Jacobian of y_1 , y_2 , y_3 with respect to x_1 , x_2 , x_3 if

$$y_{1} = \frac{x_{2} x_{3}}{x_{1}}, y_{2} = \frac{x_{3} x_{1}}{x_{2}}, y_{3} = \frac{x_{1} x_{2}}{x_{3}}.$$
(8)
(OR)

- b) i) Expand $\tan^{-1}\left(\frac{y}{x}\right)$ as a Taylor series about the point (1, 1) upto 2nd degree terms. (8)
 - ii) Find the shortest distance from the point (1, 0) to the parabola $y^2 = 4x$. (8)
- 15. a) i) Change the order of integration $\int_{0}^{1} \int_{x^{2}}^{2-x} xy dy dx$ and hence evaluate. (8) ii) Transform the integral into polar coordinates and hence evaluate

1) Transform the integral into polar coordinates and hence evaluate

$$\int_{0}^{a} \int_{0}^{\sqrt{a^{2} - x^{2}}} \sqrt{x^{2} + y^{2}} \, dy dx \cdot$$
(OR)
(8)

- b) i) Find, by double integration, the area between the two parabolas $3y^2 = 25x$ and $5x^2 = 9y$. (8)
 - ii) Find the volume of the portion of the cylinder $x^2 + y^2 = 1$ intercepted between the plane x = 0 and the paraboloid $x^2 + y^2 = 4 - z$. (8)

X 60764